Magnesium Chloride and Cancer

Magnesium stabilizes ATP allowing DNA and RNA transcriptions and repairs. There is a power and a force in magnesium that cannot be equaled anywhere else in the world of medicine. There is no substitute for magnesium in human physiology; nothing comes even close to it in terms of its effect on overall cell physiology. Without sufficient magnesium, the body accumulates toxins and acid residues, degenerates rapidly, and ages prematurely. It goes against a gale wind of medical science to ignore magnesium chloride used transdermally in the treatment of any chronic or acute disorder, especially cancer.

Magnesium repletion produced rapid disappearance of the periosteal tumors.

Aleksandrowicz et al in Poland conclude that inadequacy of Mg and antioxidants are important risk factors in predisposing to leukemias. Other researchers found that 46% of the patients admitted to an ICU in a tertiary cancer center presented hypomagnesemia. They concluded that the incidence of hypomagnesemia in critically ill cancer patients is high. [v] In animal studies we find that Mg deficiency has caused lymphopoietic neoplasms in young rats. A study of rats surviving Mg deficiency sufficient to cause death in convulsions during early infancy in some, and cardiorenal lesions weeks later in others, disclosed that some of survivors had thymic nodules or lymphosarcoma.

One would not normally think that Magnesium (Mg) deficiency can paradoxically increase the risk of, or protect against cancer yet we will find that just as severe dehydration or asphyxiation can cause death magnesium deficiency can directly lead to cancer. When you consider that over 300 enzymes and ion transport require magnesium and that its role in fatty acid and phospholipids acid metabolism affects permeability and stability of membranes, we can see that magnesium deficiency would lead to physiological decline in cells setting the stage for cancer. Anything that weakens cell physiology will lead to the infections that surround and penetrate tumor tissues. These infections are proving to be an integral part of cancer. Magnesium deficiency poses a direct threat to the health of our cells. Without sufficient amounts our cells calcify and rot in. Breeding grounds for yeast and fungi colonies they become, invaders all to ready to strangle our life force and kill us.

Over 300 different enzymes systems rely upon magnesium to facilitate their catalytic action, including ATP metabolism, creatine-kinase activation, adenylate-cyclase, and sodium-potassium-ATPase.

It is known that carcinogenesis induces magnesium distribution disturbances, which cause magnesium mobilization through blood cells and magnesium depletion in non-neoplastic tissues. Magnesium deficiency seems to be carcinogenic, and in case of solid tumors, a high level of supplemented magnesium inhibits carcinogenesis. Both carcinogenesis and magnesium deficiency increase the plasma membrane permeability and fluidity. Scientists have in fact found out that there is much less Mg++ binding to membrane phospholipids of cancer cells, than to normal cell membranes.

Magnesium protects cells from aluminum, mercury, lead, cadmium, beryllium and nickel.

Magnesium in general is essential for the survival of our cells but takes on further importance in the age of toxicity where our bodies are being bombarded on a daily basis with heavy metals. Glutathione requires magnesium for its synthesis. Glutathione synthetase requires ã-glutamyl cysteine, glycine, ATP, and magnesium ions to form glutathione. In magnesium deficiency, the enzyme y-glutamyl transpeptidase is lowered. According to Dr. Russell Blaylock, low magnesium is associated with dramatic increases in free radical generation as well as glutathione depletion and this is vital since glutathione is one of the few antioxidant molecules known to neutralize mercury. Without the cleaning and chelating work of glutathione (magnesium) cells begin to decay as cellular filth and heavy metals accumulates; excellent environments to attract deadly infection/cancer.

There is drastic change in ionic flux from the outer and inner cell membranes both in the impaired membranes of cancer, and in Mg deficiency.

Anghileri et al proposed that modifications of cell membranes are principal triggering factors in cell transformation leading to cancer. Using cells from induced cancers, they found that there is much less magnesium binding to membrane phospholipids of cancer cells, than to normal cell membranes. It has been suggested that Mg deficiency may trigger carcinogenesis by increasing membrane permeability. Magnesium deficient cells membranes seem to have a smoother surface than normal, and decreased membrane viscosity, analogous to changes in human leukemia cells. There is drastic change in ionic flux from the outer and inner cell membranes (higher Ca and Na; lower Mg and K levels), both in the impaired membranes of cancer, and of Mg deficiency. And we find that lead (Pb) salts, are more leukemogenic when given to Mg deficient rats, than when they are given to Mg-adequate rats, suggesting that Mg is protective.

Magnesium has an effect on a variety of cell membranes through a process involving calcium channels and ion transport mechanisms. Magnesium is responsible for the maintenance of the trans-membrane gradients of sodium and potassium.

Long ago researchers postulated that magnesium supplementation of those who are Mg deficient, like chronic alcoholics, might decrease emergence of malignancies and now modern researchers have found that all types of alcohol — wine, beer or liquor — add equally to the risk of developing breast cancer in women. The researchers, led by Dr. Arthur Klatsky of the Kaiser Permanente Medical Care Program in Oakland, Calif., revealed their findings at a meeting of the European Cancer Organization in Barcelona in late 2007. It was found that women who had one or two drinks a day increased their risk of developing breast cancer by 10 percent. Women who had more than three drinks a day raised their risk by 30 percent. The more one drinks the more one drives down magnesium levels.

Breast cancer is the second most common cancer killer of women, after lung cancer. It will be diagnosed in 1.2 million people globally this year and will kill 500,000.

According to data published in the British Journal of Cancer in 2002, 4 percent of all breast cancers — about 44,000 cases a year — in the United Kingdom are due to alcohol consumption. It’s an important question though, and one not asked by medical or health officials, is it the alcohol itself or the resultant drop in magnesium levels that is cancer provoking? Though some studies have shown that light- to moderate alcohol use can protect against heart attacks it does us no good to drink if it cause cancer. Perhaps if magnesium was supplemented in women drinkers who were studied there would have been no increase of cancer from drinking.

Alcohol has always been known to deplete magnesium, and is one of the first supplements given to alcoholics when they stop and attempt to detoxify and withdraw.

Researchers from the School of Public Health at the University of Minnesota have just concluded that diets rich in magnesium reduced the occurrence of colon cancer. A previous study from Sweden reported that women with the highest magnesium intake had a 40 per cent lower risk of developing the cancer than those with the lowest intake of the mineral.

more >